Física Quântica

Uma Nova Imagem do Mundo

"Qualquer um que não se choque com a Mecânica Quântica, é porque não a entendeu."

Niels Bohr (1865 – 1962)

Índice

<u>Introdução</u>

Física Clássica

Física Quântica

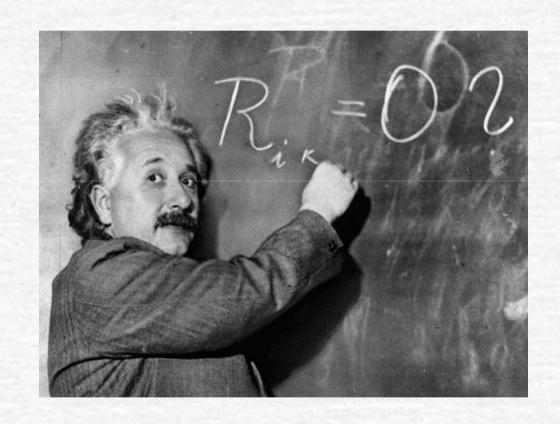
Dualidade Onda-Partícula

Princípio de Louis de Broglie

Microscópio Eletrônico

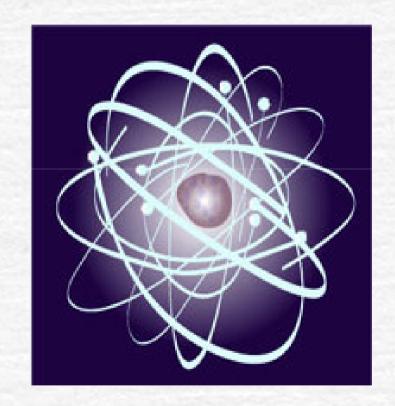
Biografias dos Físicos

Ondas Mecânicas

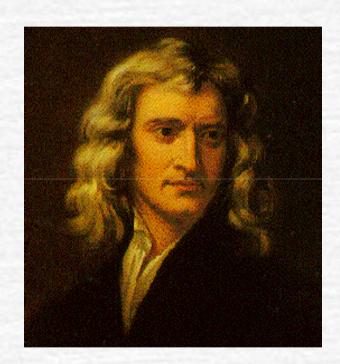

Ondas Eletromagnéticas

Ondas Periódicas

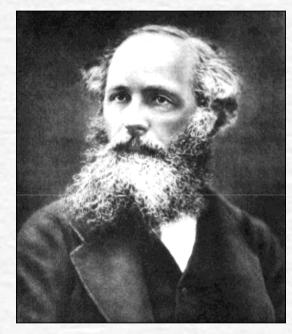
Conclusão


Referências

<u>Créditos</u>

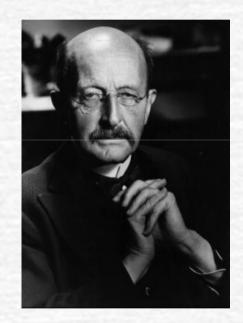

Introdução

As mudanças ocorridas no início do século passado, envolveram revisões radicais de concepções próprias da física. A transição do mundo físico no último ano do século XIX, para aquele visto, duas décadas mais tarde, se deu através da Física Quântica, que é muito mais do que apenas uma teoria, é uma forma completamente nova de ver o mundo.


Física Clássica

A Física Clássica, é a parte da Física que analisa o movimento, as variações de energia e as forças que atuam sobre um corpo. Ela é dividida em três partes: A Cinemática, que estuda o movimento, a Estática, que estuda as forças atuantes em um corpo, e a Dinâmica, que estuda as forças conseqüentes da relação entre massa e aceleração.

Isaac Newton

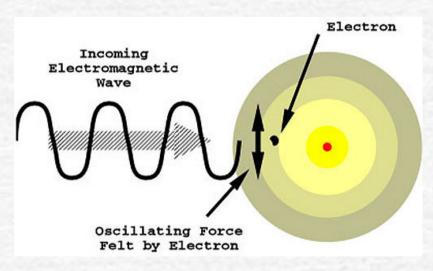

Até o século XIX, A Física Clássica já havia alcançado um grande aperfeiçoamento, e estava praticamente finalizada. As Leis de Newton permitiam o cálculo exato dos movimentos dos planetas, e as Leis de Maxwell fundamentavam a teoria eletromagnética. Porém, no final do século XIX, começaram a surgir alguns problemas, principalmente com os corpos microscópicos que não se encaixavam nas teorias clássicas. Nascia a Física Quântica, objeto de estudo da próxima seção deste trabalho.

James Clerck Maxwell

Física Quântica

A Mecânica Quântica é a parte da física que estuda o movimento dos corpos microscópicos em altas velocidades. As principais conclusões da Física Quântica são que, em estados ligados, a energia não se troca de modo contínuo, mas sim de modo descontínuo; e que é impossível atribuir ao mesmo tempo uma posição e uma velocidade exatas a uma partícula, renunciando ao conceito de trajetória, e introduzindo o conceito de função de onda.

Max Planck Pai da Física Quantica



Átomo e Seus Elétrons

Ao final do século XIX, os físicos começaram a se perguntar como definir a quantidade da energia da onda eletromagnética que era absorvida pelos elétrons de um mateiral. Por um lado, as teorias mostravam que a quantidade de energia absorvida pelos elétrons não dependia do comprimento de onda, e sim da energia e do tempo que esses elétrons ficavam sob sua ação. Porém, os experimentos mostravam uma situação totalmente inversa. Segundo observações, a quantidade de energia absorvida pelos elétrons não dependia do tempo de exposição, e sim do comprimento de onda.

<< Anterior <u>Indice</u> <u>Próximo>></u>

Coube a Albert Einstein, baseado em considerações de Max Plank, explicar corretamente esse fenômeno, marcando o nascimento da Física Quântica. Segundo Plank, a energia da onda eletromagnética era quantizada, ou seja, se propagava através de pacotes ou grãos de energia chamados fótons ou quanta. Na interpretação dada por Einstein, a onda eletromagnética será absorvida ou não pelo elétron, ou seja, o elétron irá absorver totalmente a energia da onda, ou simplesmente não absorve nenhuma energia.

Onda Eletromagnética Incidindo Sobre o Átomo

<< Anterior

Indice

Próximo>>

Dualidade Onda-Partícula

Apesar de ser uma teoria recente, a Teoria Quântica tem suas primeiras indagações desde a época de Platão, quando se procurava saber a natureza da luz. Segundo Newton, a luz emitida por uma fonte luminosa, era constituída por um feixe de partículas materiais extremamente pequenas, as quais eram chamados de corpúsculos: a Teoria Corpuscular. Porém, segundo o físico holandês Christiaan Huygens, a luz teria comportamento ondulatório. Criava-se assim, mais um impasse: Onda ou Partícula?

Christiaan Huygens

Thomas Young

Thomas Young, em seus experimentos, conseguiu medir, pela primeira vez, o comprimento de onda da luz solar. Comparando os resultados obtidos, concluiu que a luz teria uma natureza ondulatória. Porém, a teoria ondulatória não conseguia explicar o fenômeno da emissão fotoelétrica, entrando em franca contradição.

Foi Albert Einstein, usando a idéia de Max Planck, que conseguiu demonstrar que um feixe de luz são pequenos pacotes de energia e estes são os fótons, logo, assim foi explicado o fenômeno da emissão fotoelétrica.

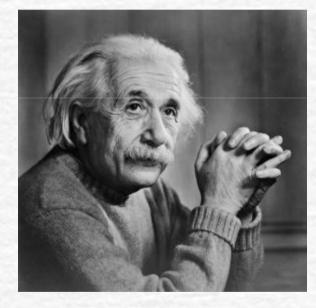
Princípio de Louis de Broglie

A explicação definitiva para a Dualidade Onda-Partícula, foi proposta por Louis de Broglie. Segundo ele, tudo na natureza é simétrico. As partículas, portanto, deveriam apresentar característica de serem tanto ondulatórias quanto corpusculares. Segundo a hipótese, a quantidade de movimento de uma partícula deve se comportar como onda. Sendo assim, a partícula deve possuir, consequentemente, um comprimento de onda uma frequencia.

Louis de Broglie

Microscópio Eletrônico

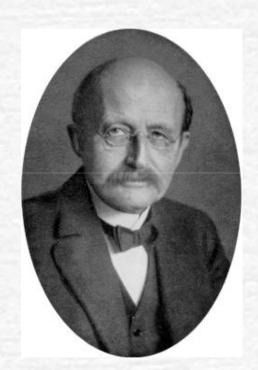
Tendo como plano de fundo a Dualidade Onda-Partícula, a Teoria Quântica encontrou rapidamente várias aplicações para a humanidade, dentre elas, o desenvolvimento do micorscópio eletrônico. O funcionamento desse instrumento, está baseado nas propriedades ondulatórias do elétron. O microscópio eletrônico é, atualmente, um dos equipamentos de maior importância na pesquisa, quer seja orgânica, quer seja inorgânica.



Microscópio Eletrônico

Biografias dos Físicos

Albert Einstein


Albert Einstein (1879 - 1955) foi o físico que propôs a teoria da relatividade. Ganhou o Prêmio Nobel da Física de 1921 pela correta explicação do efeito fotoelétrico. Nos seus últimos anos, a sua fama excedeu a de qualquer outro cientista na história. Foi um dos maiores gênios da Física, tendo seu QI estimado em cerca de 240.

Albert Einstein

Max Karl Ernst Ludwig Planck

Max Karl Ernst Ludwig Planck (1858 - 1947) foi um físico alemão considerado o pai da teoria quântica. Como consequência do nascimento da física quântica, foi premiado em 1918 com o Prêmio Nobel de Física. Durante a Segunda Guerra Mundial, Planck tentou convencer Hitler a dar liberdade aos cientistas judeus. Morre em 4 de outubro de 1947 em Göttingen.

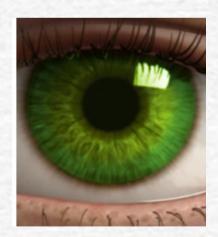
Max Planck

Louis de Broglie

Louis Victor Pierre Raymond, Sétimo Duque de Broglie, geralmente conhecido por Louis de Broglie (1892 -1987) foi um físico francês. Recebeu o Prêmio Nobel de Física em 1929 pela descoberta da natureza ondulatória dos elétrons, evidenciada na dualidade onda-corpúsculo.

Louis de Broglie

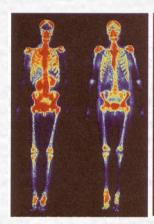
Thomas Young


Thomas Young (1773 - 1829) foi um físico e médico britânico. É famoso pelo experimento da dupla fenda, que possibilitou a determinação do carácter ondulatório da luz. Young exerceu a Medicina durante toda a sua vida mas ficou conhecido por seus trabalhos em Óptica, onde ele explica o fenômeno da interferência; e em Mecânica, pela definição do Módulo de Young.

Thomas Young

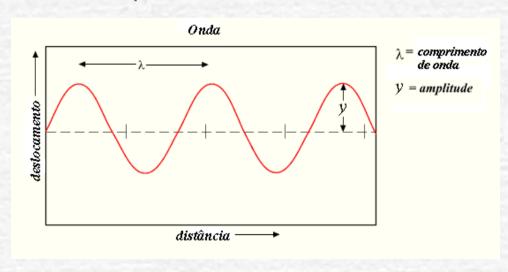
Ondas Mecânicas

Na física, ondas mecânicas são aquelas que necessitam de um meio material para se propagarem, e sua velocidade de propagação depende do meio, ou seja, mudando-se as características do material, muda-se a velocidade de propagação da onda.


Ondas Eletromagnéticas

Ondas eletromagnéticas são aquelas que não necessitam de algum meio material para se propagarem, apenas transportam energia.

Elas atravessam qualquer tipo de material, orgânico ou inorgânico e é possível sentir seus efeitos sobre o organismo.



Ondas Periódicas

Algumas ondas são constituídas por uma seqüência regular de perturbações. Nesse caso chamamos a onda de periódica. A duração de cada perturbação individual chama-se período, a quantidade de perturbações em uma dada unidade de tempo é chamada de freqüência, e a distância entre os dois picos é chamada de comprimento de onda.

<< Anterior <u>Indice</u> <u>Próximo>></u>

Conclusão

Cocluímos, portanto, que a Mecânica Quântica, é uma teoria usada em casos que envolvem corpos microscópicos e velocidades altas, como os elétrons e prótons. Suas principais conclusões são que, em estados ligados, a energia se troca de modo descontínuo; e que é impossível atribuir ao mesmo tempo uma posição e uma velocidade exatas a uma partícula.

Concluímos também que a participação de Albert Einstein, Max Planck, Louis de Broglie e Thomas Young, entre outros físicos, foram expressivas para o desenvolvimento da Física Quântica, uma teoria que representou uma revolução na maneira de ver o mundo.

Referências

http://fisica.net

http://comciencia.br

http://pt.wikipedia.org

http://feiradeciencias.com.br

Enciclopedia Barsa 2000

Aragão, Eliete Meira Coelho Arruda

Física: Ensino Médio, 2ª série / Eliete Meira Coelho Arruda e Pedro

Henrique Arruda Aragão. 1 ed. Brasília: CIB – Cisbrasil, 2005.

Créditos

Colégio Salesiano Itajaí.

Diretor: Pe. Lino Fistarol.

Disciplina: Física.

Professor: Valdir Backes

Alunos: Gustavo

Leandro

Mayara

Caio

Série: 2°C